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1.  Microsimulation principles  

 

 Main principles 

The FRESHER microsimulation model is designed to model the impacts of behavioural and metabolic 
risk factors on chronic diseases and longevity, as well as the extent to which specific policies can modify 
those impacts.  

The model uses case-based microsimulation to create representative synthetic life histories from 
birth to death providing multiple cross-sectional representations of a population during the ‘validation 
period’ – when both simulated and historical data are available and can be compared to validate or 
calibrate the model (1990-2015) – and the ‘projection period’ – over which quantitative estimates of the 
future global burden of chronic non-communicable diseases (NCDs) in the EU and policy impact (2016-
2030 and 2016-2050) are simulated. 

 
Figure 1.1 Microsimulation model 

 
 

 Continuous time event based model 

The model simulates life histories in continuous time. An individual is described with a set of different 
characteristics modelling relevant dimensions for public health –demography, risk factors, health.  



6 │   
 

 

 

 

 
 

  
 

This project has received funding from the european union’s horizon 2020  
research and innovation programme under grant agreement no 643576. 

 

Page 6 of 56 

 

A set of events is attached to the individual –birthday, immigration, migration, death, drinking 
initiation, incidence, remission and fatality. In most cases, time to event is stochastically determined 
based on a distribution function of individual characteristics.  

Those events s compete with each other, i.e. the shortest time to event will determine what event 
happens first. An event can modify individual characteristics and consequently impact the likelihood of 
other events occurring (by modifying the intensity of their distributions). Once the individual is initialized, 
it is then simulated from birth to death though this competing event mechanism.  

 A synthetic population 

The model creates representative synthetic life histories from birth to death providing a cross-
sectional representation of the population during the validation (1990-2015) and the projection period 
(2016-2050). During the validation period both the simulated population and the historical one are 
available and can be compared to assess the ability of the model to coherently reproduce the cross-
sectional distribution of the population.  

Due to memory issue, it is not possible to record the entire life of every simulated individual. The 
model produces aggregated tables. Those tables can record: 

- The number of individual with certain characteristic (e.g. alive for the population table and disease 
status for the disease prevalence table) 

- The number of events occurred during the last year (e.g. deaths events and disease incidence 
events) 

- Cumulative outcomes per year: (e.g. health expenditures and DALYs) 
 
Those tables are then rescaled to provide cross-sectional estimates of the population. During the 

validation period both the simulated population and the historical one are available and can be compared 
to assess the ability of the model to coherently reproduce the cross-sectional distribution of the 
population. 

 
More details are available in Deliverable 5.1. 

 Modelling uncertainty 

 Simulation uncertainty 

To estimate the simulation uncertainty, we distribute the simulation into subsamples (for example 20). 
For every outcome, we record the table for all the subsamples. This allows us to compute the mean, and 
the standard deviation of every outcome.  

 Baseline uncertainty 

The uncertainty of the baseline comes from the uncertainty of the input parameters. For the FRESHER 
project we do not include that uncertainty in our modelling. It means we are running the model with the 
mid estimate for every parameter. 

 Scenario/Intervention uncertainty 

The main purpose of the model is to assess the impacts of an alternative scenario, or of an intervention, 
on the outcomes. To do so we run the model twice (with the same seed) and we compare the outcomes. 
As we can distribute the simulation into subsamples we can compute the difference between the baseline 
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and the alternative scenario for each subsample and then compute the standard deviation of the 
difference.  
We are making the hypothesis that most of the uncertainty on the baseline “disappeared” when we 
compute the delta and by consequences that the mean and the standard deviation of the delta outcomes 
represent the true uncertainty of the scenarios differences. 
 

 

1.2.3.1. Intervention uncertainty 

Most of the uncertainty comes from the uncertainty on the intervention’s parameters. The model 
can estimate this uncertainty by running the intervention with different set of parameters and then 
provide different estimates for the outcomes. This has not been done for the moment, in the FRESHER 
results. 

 
  

Outcome

Baseline 
scenario

Alternative 
scenario/ 

intervention
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2.  Diseases 

 Standard diseases 

We are basing our modelling on the epidemiological estimates from the GBD 2015 project. The 
majority of diseases and injuries are modelled using DisMod-MR 2.0, a Bayesian mixed-effects meta-
regression modelling tool developed for GBD analyses. This tool provides estimates for incidence, 
remission, fatality and prevalence rate for over 300 conditions in 195 countries and territories from 1990 
to 2015. We have accessed to the data through the web tool Epi Visualization | IHME Viz ((IHME)) 

 Model 

 
Figure 2.1: Modelled disease pathway 

 
 

 
 
 
 
The IHME dataset gives us access to incidence, fatality, remission rate for every disease. We model 

the disease pathway described in Figure 2.1, through 3 events –incidence, remission, and fatality. The 
remission and the fatality hazard ratio are directly derived from IHME database.  As risk factors impact 
disease incidence, we multiply the baseline incidence by a factor taking into account the risk profile of 
the individual as explained in 3.1.2. 

 
For certain diseases –stroke, myocardial infarction, injuries – even if the individual experienced 

remission, it keeps a “sequela” which can impact its quality of life and the incidence of other events.  

Healthy people 

Sick people 

Dead people 

Remission : rate at which OR time after 
which  people with disease go back to a 
state in which they have same survival 
prospect as people with no disease 

Fatality: rate of 
occurrence of death 
due to the disease 
among those with 
the disease 

Residual mortality: rate of 
occurrence of death for any other 

cause not explicitly included in the 
modelthose with the disease 

Incidence: rate 
of occurrence 

of a disease 
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 Cancers 

 Available data: 

In the IHME framework, cancers are not modelled with DismodMR-2. We are the using two other data 
sources: 

- IHME GDB 2015 Result Tools. In this web tool we have access to the incidence and death rate for 
most of cancers by gender, age-group from 1990 to 2015. 

- GLOBOCAN IARC. In those data also available online, we are using the total incidence, plus the 
prevalence at 1 (resp. 3 and 5) year, i.e. the total number of people living with a cancer diagnosed 
less than one (resp. 3 and 5) years ago. 

 

 Modelling 

 
To model cancers, we assume that cancers duration is 5 year. It means that if the individual does not 

die within the 5 years it will be considered as fully recovered and will go back to a state in which it have 
same survival prospect as people with no disease.  

We model the cancer pathway with 3 events incidence, remission and death. Once the individual 
pass through the incidence-event, we determine randomly, based on the survival rate at 5 years (see 
2.2.2.2. , if he will die within the 5 years or if he will survive. If he survives the time to the remission event 
is set at 5Y (and the death event to infinite), if it will dies in the 5Y we set the time of the death event 
using the distribution of deaths computed below. 

 

2.2.2.1. Distribution of death by cancer 

Death by cancer does not occur uniformly within the 5 years of illness, e.g. people die more 
frequently during the first year. We use the data from IARC to compute the distribution of deaths during 
the 5 years. We introduce a “survival rate” depending on the year since diagnosis. We then have: 

𝑃1𝑌 = 𝑠𝑟0 ∗ 𝐼 
𝑃3𝑌 = 𝑠𝑟0𝐼 + 𝑠𝑟0 ∗ 𝑠𝑟1 ∗ 𝐼 + 𝑠𝑟0𝑠𝑟1𝑠𝑟2𝐼 
𝑃5𝑌 =  𝑠𝑟0𝐼 + 𝑠𝑟0𝑠𝑟1𝐼 + 𝑠𝑟0𝑠𝑟1𝑠𝑟2𝐼 + 𝑠𝑟0𝑠𝑟1𝑠𝑟2𝑠𝑟3𝐼 + 𝑠𝑟0𝑠𝑟1𝑠𝑟2𝑠𝑟3𝑠𝑟4𝐼  

We assume that 𝑠𝑟1 = 𝑠𝑟2 and 𝑠𝑟3 = 𝑠𝑟4, which led us to 

𝑠𝑟0 =
𝐼

𝑃1𝑌
 

𝑠𝑟2
2 + 𝑠𝑟2 + 1 =  𝑃3𝑌/𝑃1𝑌 

𝑠𝑟4
2 + 𝑠𝑟4 =  

𝑃5𝑌 − 𝑃3𝑌

𝑠𝑟0𝑠𝑟2
2𝐼

 

We solve the equations (one unique positive solution) and we can then compute the number of deaths 
which occurs every year during the cancer duration: 

𝐷𝑒𝑎𝑡ℎ𝑇𝑜𝑡𝑎𝑙 = 1 −  𝑠𝑟0 ∗ 𝑠𝑟1 ∗ 𝑠𝑟2 ∗ 𝑠𝑟3 ∗ 𝑠𝑟4 
𝐷𝑒𝑎𝑡ℎ𝑖 =  𝑛𝑖−1 ∗ (1 − 𝑠𝑟𝑖) 
𝑛𝑖 = 𝑛𝑖−1 ∗ 𝑠𝑟𝑖, 𝑛0 = 1 
𝑤𝑖 = 𝐷𝑒𝑎𝑡ℎ𝑖/𝐷𝑒𝑎𝑡ℎ𝑇𝑜𝑡𝑎𝑙  
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We use the 𝑤𝑖 to determine the time of the death event. For example if the weights are (0.5, 0.3, 0.1, 
0.07, 0.03) it means that 50% will occur during the first year of disease, 30% during the 2sd year and 
successively. The date of the death event is computed randomly. From the uniform distribution we pick 
a quantile; we then convert in time using the distribution of time to death as in Figure 2.3, e.g. 0.25 will 
convert into a time to death equal to 6 months. 
 
We use the 𝑤𝑖 to determine the time of the death event. For example if the computed weights are (0.5, 
0.3, 0.1, 0.07, 0.03), it means that 50% will occur during the first year of disease, 30% during the 2sd year 
and successively. The date of the death event is computed through a random number, e.g. 0.25 will 
convert into a time to death equal to 6 months.  
  

Figure 2.2: Example of the distribution of time to death for cancers 

 
 

0

1

2

3

4

5

6

0 0,2 0,4 0,6 0,8 1 1,2

Ti
m

e
 t

o
 d

ea
th

quantile



  │ 11 
 

 

 
 

  
      

  
 

This project has received funding from the european union’s horizon 2020  
research and innovation programme under grant agreement no 643576. 

 

Page 11 of 56 

 

Figure 2.3: Repartition of the deaths during the 5 years of cancers, Germany (female) 

 
 

2.2.2.2. Survival rate at 5Y 

We use incidence and mortality data (from IHME) to compute the survival rates at 5 year (by gender, 
year and age). The deaths by cancer for a specific year, age depends on the incidence of the past five 
years, on the survival rates at 5 years and on the distribution of deaths we computed previously. 

𝑑(𝑦, 𝑛) = 𝑖(𝑦 − 1, 𝑛 − 1) ∗ 𝑠𝑟(𝑦 − 1, 𝑛 − 1) ∗ 𝑤0 
+ 𝑖(𝑦 − 2, 𝑛 − 2) ∗ 𝑠𝑟(𝑦 − 2, 𝑛 − 2) ∗ 𝑤1 
+ 𝑖(𝑦 − 3, 𝑛 − 3) ∗ 𝑠𝑟(𝑦 − 3, 𝑛 − 3) ∗ 𝑤2 
+ 𝑖(𝑦 − 4, 𝑛 − 4) ∗ 𝑠𝑟(𝑦 − 4, 𝑛 − 4) ∗ 𝑤3 
+ 𝑖(𝑦 − 5, 𝑛 − 5) ∗ 𝑠𝑟(𝑦 − 5, 𝑛 − 5) ∗ 𝑤4 

 
Using a piece-linear function for survival rate where age knots are fixed, we optimize survival rate 

function to minimize the difference with the input mortality.  
 
Figure 2.4: Survival rate at 5Y, Germany, male, 2015 

 

0%

20%

40%

60%

80%

100%

Lung cancer Breast cancer Colorectal cancer Oesophagus
cancer

5th year 4th year 3rd year 2dn year 1st year

0%

20%

40%

60%

80%

0 20 40 60 80 100 120
Oesophagus cancer Lung cancer Colorectal cancer



12 │   
 

 

 

 

 
 

  
 

This project has received funding from the european union’s horizon 2020  
research and innovation programme under grant agreement no 643576. 

 

Page 12 of 56 

 

 
Figure 2.5: Evolution of survival rates at 5 years (Breast cancer, Germany, female)

 

2.2.2.3. Limitations 

There are some limitations in the model. First, when we compute the distribution of deaths, we have 
only access to one year of data and then we are using the same weights for the entire period. Moreover 
we don’t either have access to age specific data. The distribution of deaths is then assumed to be constant 
over age.  

Nevertheless we manage to calibrate survival rates at five years, and we observe a decrease in the 
mortality of cancer during the past decades as you can see in Figure 2.5. 

 Residual mortality 

The cause specific mortality is removed from the total mortality to compute the residual mortality using 
the following formula: 

𝜆𝑟 = 𝜆 − ∑ 𝑃𝑖  ∙ 𝑓𝑖

𝑖∈𝑑𝑖𝑠𝑒𝑎𝑠𝑒

 − ∑ 𝑚𝑖

𝑖∈𝑐𝑎𝑛𝑐𝑒𝑟𝑠

 

Where 𝜆 (resp.  𝜆𝑟) is the hazard ratio for the total (resp. residual) mortality, 𝑓𝑖 the fatality of disease  
𝑖 (standard IHME diseases) and 𝑃𝑖 the prevalence of disease 𝑖 and 𝑚𝑖 the mortality of cancer 𝑖 . 

 Disability weights 

We use the methodology described in the technical appendix of the GDB 2015 report on incidence, 
prevalence and YLDs  (Vos et al., 2016[1]) . For each disease they draw a picture of the associated sequelae 
and health states. They also provided “severity split” we have used to be able to compute an aggregated 
disability weight for every disease. For each health status we have used the associated disability weight 
published by WHO in (Mathers et al., 2017[2]). When disability weights were available with and without 
treatment we have chosen the “with treatment” one. 

Every disease is attached to a specific disability weight, the computation of those weights are 
described in the sections below.  

The global disability weight of an individual is then computed every year taking into account it health 
status during the year. In case of multi comorbidities we use the following formula: 

20%

40%
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𝐷𝑊 = 1 −  ∑(1 − 𝐷𝑊𝑖)

𝑖

 

 Diabetes 

2.4.1.1. Disability weights by severity level 

Table 2.1: Disability weight by severity levels for Diabetes 

Severity level Health State 
GHE 
2015 

GBD 
2015 

Uncomplicated diabetes mellitus 
Generic uncomplicated disease: worry and 
daily medication 

0.049 0.049 

Diabetic neuropathy Diabetic neuropathy 0.133 0.133 

Diabetic neuropathy with Diabetic foot Multiple (specific to IHME)  0.02 

Diabetic neuropathy with amputation Amputation of one leg: long term 0.039 0.039 

Moderate vision loss due to diabetes mellitus Distance vision: moderate impairment 0.089 0.031 

Severe vision loss due to diabetes mellitus Distance vision: severe impairment 0.314 0.184 

Blindness due to diabetes mellitus Distance vision: Blindness 0.338 0.187 

Source: IHME-GBD 2015 and WHO-GHE 2015 

2.4.1.2. Methodology 

We have used the prevalence of the different sequelae in 2015: “Diabetic foot”, “Amputation due to 
diabetes mellitus”, “Diabetic neuropathy”,” Vision impairment due to diabetes mellitus”, available by 
country gender and age-group in the IHME dataset. We have used the “with treatment” disability weights 
for amputation. We have assumed that people only have one sequela and that the difference between 
100% and the sum of the available sequelae prevalence represents people with uncomplicated diabetes. 
We are then able to compute an average disability weights for diabetes by country/year/gender/age-
group. 

 Cerebrovascular Diseases 

2.4.2.1. Disability weights by severity level 

Table 2.2: Disability weight by severity levels for stroke 

Severity level Health State 
GHE 
2015 

GBD 
2015 

Stroke, long‐term consequences, mild Stroke, long‐term consequences, mild 0.019 0.019 

Stroke, long‐term consequences, moderate Stroke, long‐term consequences, moderate 0.07 0.07 

Stroke, long‐term consequences, moderate plus 
cognition problems 

Stroke, long‐term consequences, moderate 
plus cognition problems 

0.316 0.316 

Stroke, long‐term consequences, severe Stroke, long‐term consequences, severe 0.552 0.552 

Stroke, long‐term consequences, severe plus 
cognition problems 

Stroke, long‐term consequences, severe plus 
cognition problems 

0.588 0.588 

Source: IHME-GBD 2015 and WHO-GHE 2015 

2.4.2.2. Methodology 
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People who survived a stroke episode are assigned with stroke sequelae for the rest of their life. We 
are using the mid-level of severity: “Stroke, long‐term consequences, moderate plus cognition problems”.  

 Ischaemic heart disease 

2.4.3.1. Disability weights by severity level 

 
Table 2.3: Disability weight by severity levels for IHD 

Severity level Health State 
GHE 
2015 

GBD 
2015 

Acute myocardial infarction, days 1/2 Acute myocardial infarction, days 1‐2 0.432 0.432 

Acute myocardial infarction, days 3/28 Acute myocardial infarction, days 3‐28 0.074 0.074 

Mild angina Angina pectoris: mild 0.033 0.033 

Moderate angina Angina pectoris: moderate 0.08 0.08 

Severe angina Angina pectoris: severe 0.167 0.167 

Source: IHME-GBD 2015 and WHO-GHE 2015 

2.4.3.2.  Methodology 

See Deliverable 5.1 of the FRESHER project. 

 Chronic obstructive pulmonary disease 

2.4.4.1. Disability weights by severity level 

Table 2.4: Disability weight by severity levels for COPD 

Severity level Health State 
GHE 
2015 

GBD 
2015 

COPD and other chronic respiratory 
problems, mild 

COPD and other chronic respiratory problems, mild 
0.019 0.019 

COPD and other chronic respiratory 
problems, moderate 

COPD and other chronic respiratory problems, 
moderate 

0.225 0.225 

COPD and other chronic respiratory 
problems, severe 

COPD and other chronic respiratory problems, 
severe 

0.408 0.408 

Source: IHME-GBD 2015 and WHO-GHE 2015 

2.4.4.2.  Methodology 

We have used the prevalence of the different severities of COPD in 2015 available by country gender 
and age-group in the IHME dataset. And you have computed the average disability weight associated. 

 Major depressive disorder 

2.4.5.1. Disability weights by severity level 

Table 2.5: Disability weight by severity levels for major depressive disorder 

Severity level Health State 
GHE 
2015 

GBD 
2015 

Severity 
Distribution 
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Asymptomatic     13%, 10%‐17% 

Mild Major Depressive disorder: mild episode 0.145 0.145 59%, 49%‐69% 

Moderate Major Depressive disorder: moderate episode 0.396 0.396 17%, 13%‐22% 

Severe Major Depressive disorder: severe episode 0.658 0.658 10%, 3%‐20% 

Source: IHME-GBD 2015 and WHO-GHE 2015 

 “To determine the proportion of people with MDD within each of the severity levels, the US National 
Epidemiological Survey on Alcohol and Related Conditions (NESARC, conducted in two waves from 
2001‐2002 and 2004‐2005) 9 and the Australian National Survey of Mental Health and Wellbeing of 
Adults (NSMHWB, conducted in 1997) 10 were used to estimate the proportion of MDD cases 
asymptomatic (13%, 10%‐17%), mild (59%, 49%‐69%), moderate (17%, 13%‐22%), and severe (10%, 
3%‐20%).” 

2.4.5.2. Methodology 

Using the severity split and the associated disability weights we have computed an average disability 
weight for major depressive disorder: DW = 0.219 

 

 Alzheimer disease and other dementias 

Table 2.6: Disability weight by severity levels for dementia 

Severity level Health State 
GHE 
2015 

GBD 
2015 

Severity Distribution (by age) 

<70 70-80 80+ 

Mild Dementia: mild 0.165 0.069 
79% (71‐
86%) 

71% (63‐
78%) 

61% (53‐
68%) 

Moderate Dementia: moderate 0.388 0.377 
17% (11‐
23%) 

19% (14‐
24%) 

26% (22‐
30%) 

Severe Dementia: severe 0.545 0.449 4% (2‐7%) 
9% (5‐
13%) 

12% (7‐
17%) 

Source: IHME-GBD 2015 and WHO-GHE 2015 

“In GBD 2013 (and used in GBD 2015), we extracted data from studies reporting on mild, moderate, 
and severe dementia. As the data indicate an age pattern with greater proportions with more severe 
disease in the very old we restricted our analyses to studies reporting on severity <70, 70‐79, and 80+ 
ages. Most of these studies reported severity based on the Clinical Dementia Rating scale (CDR): CDR=1 
as mild, CDR=2 as moderate, and CDR=3 as severe dementia. Other studies report staging of dementia 
according to the Mini Mental State Examination (MMSE); DSM III criteria; the Functional capacity 
scale; the Cambridge Mental Disorders of the Elderly Examination (CAMDEX); the scale of Hughes and 
the Geriatric Mental State (GMS). We used a random effects meta‐analysis to pool the data by severity 
level.” 

2.4.6.1. Methodology 

Using the severity split and the associated disability weights we have computed an average disability 
weight for the three age group (<70, 70-80, 80+) 

 Age<70:  DW = 0.137 

 70 – 79, DW = 0.161 
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 80+, DW = 0.194 

 Rheumatoid arthritis 

2.4.7.1. Disability weights by severity level 

Table 2.7: Disability weight by severity levels for rheumatoid arthritis 

Severity level Health State 
GHE 
2015 

GBD 2015 
Severity 
Distribution 

Mild 
Musculoskeletal problems, 
upper limbs, moderate 

0.117 0.117 48.8% (37.9‐59.6%), 

Moderate 
Musculoskeletal problems, 
generalized, moderate 

0.317 0.317 37.6% (29.3‐46.2%) 

Severe 
Musculoskeletal problems, 
generalized, severe 

0.581 0.581 12.2% (7.8‐17.4%). 

Source: IHME-GBD 2015 and WHO-GHE 2015 

“To determine the proportion of people with RA within each of the severity levels, seven studies from 
three regions provided information on the severity of RA. Severity was classified according to Health 
Assessment Questionnaire scores, with the cut‐off scores for each severity level: <1 mild; 1‐1.875 
moderate; and ≥2 severe. Estimates were pooled across studies. We used a random effects meta‐analysis 
model. The pooled percentages were: mild 48.8% (37.9‐59.6%), moderate 37.6% (29.3‐46.2%) and severe 
12.2% (7.8‐17.4%). After streaming out 1,000 draws assuming a binomial distribution, percentages were 
scaled to sum to 1 at each draw. “ 

2.4.7.2. Methodology 

Using the severity split and the associated disability weights we have computed an average disability 
weight for rheumatoid arthritis: DW = 0.24717 

 Osteoarthritis of the hip and Osteoarthritis of the knee 

2.4.8.1. Disability weights by severity level 

Table 2.8: Disability weight by severity levels for osteoarthritis 

Severity level Health State 
GHE 
2015 

GBD 2015 
Severity 
Distribution 

Mild Musculoskeletal problems, lower limbs, mild 0.023 0.023 47.0% (42.2‐51.9%) 

Moderate 
Musculoskeletal problems, lower limbs, 
moderate 

0.079 0.079 35.9% (31.3‐40.7%) 

Severe 
Musculoskeletal problems, lower limbs, 
severe 

0.165 0.165 17.1% (12.9‐21.6%) 

Source: IHME-GBD 2015 and WHO-GHE 2015 

“To determine the proportion of people with OA within each of the severity levels, 4 studies from 3 
regions provided information on the severity of OA. Severity was classified based on the Western Ontario 
and McMaster Universities Arthritis Index (WOMAC) with scores 0‐5 taken as mild, 6‐13 as moderate and 
14 and higher as severe. Estimates were pooled across studies using a random effects meta‐analysis 
model. The pooled percentages were: mild 47.0% (42.2‐51.9%), moderate 35.9% (31.3‐40.7%) and severe 
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17.1% (12.9‐21.6%) pooled between patient and physician ratings in a study from Bangladesh which we 
apply to low and middle income countries. The pooled proportions from three high income countries were: 
mild 74.3% (64.8‐82.7%), moderate 24.3% (16.4‐33.1%), and severe 1.1% (0.6‐1.7%).” 

2.4.8.2. Methodology 

Using the severity split and the associated disability weights we have computed an average disability 

weight for osteoarthritis:  DW = 0.038101 

 Low back pain 

2.4.9.1. Disability weights by severity level 

Table 2.9: Disability weight by severity levels for back pain 

Severity level Health State GHE 
2015 

GBD 
2015 

Mild Low back pain, mild 0.02 0.02 

Moderate Low back pain, moderate 0.054 0.054 

Severe without leg pain Back pain, severe, without leg pain 0.272 0.272 

Severe with leg pain Back pain, severe, with leg pain 0.325 0.325 

Most severe without leg pain Back pain, most severe, without leg pain 0.372 0.372 

Most severe with leg pain Back pain, most severe, with leg pain 0.384 0.384 

Source: IHME-GBD 2015 and WHO-GHE 2015 

Severity level Distribution  
“The severity distributions are derived from an analysis of the Medical Expenditure Panel Surveys 

(MEPS) in the US.” 
 
Table 2.10: Severity level distribution of back pain 

Severity level Distribution without leg pain Distribution with leg pain 

Mild 0.39 (0.29‐0.50) 0.27 (0.18‐0.37) 

Moderate 0.36 (0.26‐0.44) 0.37 (0.28‐0.44) 

Severe 0.11 (0.09‐0.12) 0.13 (0.10‐0.16) 

Most Severe 0.15 (0.09‐0.21) 0.23 (0.15‐0.32) 

Source: IHME-GBD 2015 and WHO-GHE 2015 

“We used US claims data to derive the proportion of cases with low back pain who report leg pain.” 
 

2.4.9.2. Methodology 

We used 30% for the proportion of LBP with leg pain, which is quite conservative. Then, using the 
severity split and the associated disability weights we have computed an average disability weight for 
low back pain: DW= 0.125857 
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 Cirrhosis 

2.4.10.1. Disability weights by severity level 

Table 2.11: Disability weight by severity levels for cirrhosis 

Sequela Health state GHE 2015 GBD 2015 

Cirrhosis Decompensated cirrhosis of the liver 0.178 0.178 

Source: IHME-GBD 2015 and WHO-GHE 2015 

 Lower Respiratory Infection 

2.4.11.1. Disability weights by severity level 

 
“The distribution of moderate (85%) and severe (15%) lower respiratory infections is determined 

by a meta‐analysis of the ratio of severe to all LRI from studies that report the incidence of moderate 
and severe lower respiratory infections. 

We used the health states of acute infectious disease episode, moderate and severe, with the lay 
descriptions and disability weight values shown in table below:” 

 
Table 2.12: Disability weights for lower respiratory infection 

Severity level Health state GHE 
2015 

GBD 
2015 

Severity 
Distribution  

Moderate Infectious disease: acute episode, moderate 0.051 0.051 85% 

Severe Infectious disease: acute episode, sever 0.133 0.133 15% 

Source: IHME-GBD 2015 and WHO-GHE 2015 

2.4.11.2. Methodology 

Using the severity split and the associated disability weights we have computed an average disability 

weight for osteoarthritis:  DW = 0.0633. 

 Cancers 
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Disability weights for cancers are associated to the stage of the cancer.  

2.4.12.1. Disability weights by severity level 

Severity level Health State 
GHE 
2015 

GBD 
2015 

Primary stage Cancer: diagnosis and primary therapy 0.288 0.288 

Metastatic phase Cancer: metastatic 0.451 0.451 

Terminal phase Terminal phase: with medication  0.540 0.540 

Source: WHO-GHE 2015 

As we don’t model cancer’s stages in the microsim tool, we are using the disability weight associated 
to diagnosis and primary therapy.  

 Injuries 

We used the framework developed by IHME and explained in the supplementary appendix of (Vos 
et al., 2012[3]). They have created two matrixes. The first one (see Table 7.1 in Appendix) maps ICD10 
codes to “23 nature of injuries”. Each nature of injury refers to specific health states (long and short term 
disability weights). The second matrix (see Table 7.2 in Appendix) describes the proportion of the 
different natures of injuries in each cause of injury (Falls, Road accident, etc.).  

We have used those two matrixes to compute an average short/long term disability weight for every 
injury modelled. When an individual is injured the short term disability weight applies until recovery or 
death. The individual is then attached to an injury sequela and the long term disability weight applies. 

 
Table 2.13: Disability weight by severity levels for injuries  

Road injuries Falls Drowning Self-harm Interpersonal 
violence 

Short Term 0.113 0.110 0.194 0.120 0.083 

Long Term 0.141 0.119 0.157 0.018 0.110 
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3.  Risk factors 

 Modelling framework 

We model every risk factor independently. They don’t interact which each other.  

 Longitudinal trajectory modelling approach 

All of the risk factors’ longitudinal trajectories are modelled by assuming that each individual’s 
relative position on the age and gender specific distribution of each risk factor remains constant over 
time. The value of the individual risk factor evolves over age and over time following the changes of the 
risk factor distribution over ages and years. Modelling a risk factor consists then in fitting continuous (or 
discrete) age-, year- and gender-specific distributions on cross-sectional data. This will be detailed in the 
next sections. 

 

Box 3.1. Using uniform distributions to sample arbitrary distribution 

The longitudinal trajectory modelling approach is based on the mathematical method 
which uses the uniform distribution for sampling from arbitrary distributions.  

The probability integral transform states that if 𝑋 is a continuous random variable with 
cumulative distribution function 𝐹𝑋 then the random variable 𝑌 = 𝐹𝑋(𝑋), has a uniform 
distribution on [0, 1]. The inverse probability integral transform is just the inverse of this: 
specifically, if 𝑌 has a uniform distribution on [0, 1] and if 𝑋 has a cumulative distribution 
𝐹𝑋, then the random variable 𝐹𝑋

−1(𝑌) has the same distribution as 𝑋.  

 
The main drawbacks of this method are first that we do not model a real longitudinal pattern. Indeed 

as we fit our distribution on cross sectional data, we do not model any longitudinal impacts. E.g. changing 
the prevalence of obesity in childhood does not have any impact on the distribution of obesity in adults 
30 years later.  

 
The second drawback of this approach is that we introduce a “selection bias”. People at the top of 

the distribution are at higher risks. Then, they are more likely to die sooner than people at the bottom of 
the distribution. Consequently, the distribution of the quantile in a cohort -which is uniform at the 
beginning- tends to change. If the selection bias is too important, the model is not able to replicate 
correctly the risk factor distribution (see Box 3.1.). Nevertheless this selection bias is relatively limited. 

 How risk factors impact health 

Risk factors impact disease incidence through relative risks. We assume that the relative risk we are 
using are “adjusted” meaning that they capture the effect of the specific risk factor adjusting for every 
other causes.  

For every couple risk facto/disease we compute the “baseline risk” which combines the prevalence 
of the different risk categories and their associated relative risk (the computation is detailed in the next 
section for every relative risk. 

For a single risk factor the conditional incidence,  𝐼|𝑅𝑖𝑠𝑘 of a disease with an incidence 𝐼, knowing 
the risk profile is then: 

𝐼|𝑅𝑖𝑠𝑘 = 𝑅𝑅 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑅𝑖𝑠𝑘 ∗ 𝐼 
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For example, for smokers, with 𝑅𝑅 the relative risk for smokers versus non-smokers, we then have  
𝐼|𝑆𝑚𝑜𝑘𝑒𝑟 = 𝑅𝑅 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑅𝑖𝑠𝑘 ∗ 𝐼 
𝐼|𝑁𝑜𝑛 𝑆𝑚𝑜𝑘𝑒𝑟 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑅𝑖𝑠𝑘 ∗ 𝐼 

 
We assume that relative risks combine “multiplicatively”, i.e. we multiply both relative risk and 

baseline risk to get the specific incidence of the global risk profile.  We illustrate the formula below with 
smoking and BMI.  

 𝐼|(𝑆𝑚𝑜𝑘𝑒𝑟 &{𝐵𝑀𝐼 = 30}) = 𝑅𝑅(𝑆𝑚𝑜𝑘𝑒𝑟)𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑅𝑖𝑠𝑘(𝑆𝑚𝑜𝑘𝑖𝑛𝑔) ∗ 𝑅𝑅(𝐵𝑀𝐼 =
30) 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑅𝑖𝑠𝑘(𝐵𝑀𝐼) ∗ 𝐼 

 
Risk factors impact only disease incidence, we do not model any effect on fatality, and this is a very 

conservative hypothesis. 

 Alcohol 

 Data 

3.2.1.1. IHME Dataset 

IHME dataset 
We have access to the following dimensions for alcohol consumption in the IHME dataset: 

- Alcohol Consumption (g/day) 
- Proportion of drinking events that are binge amongst binge drinkers 
- Proportion of current drinkers, defined as the proportion of individuals who have consumed at 

least one alcoholic beverage (or some approximation) in the last 12 months. 
- Proportion of binge drinkers: defined as the proportion of drinkers who have had a binge event 

in the past 12 months. A binge event was defined as consuming 60 grams of alcohol 
approximately five drinks or more) in a single occasion for males and 48 grams of alcohol in a 
single occasion for females. 

- Proportion of former drinkers 
- Proportion of lifetime abstainers, defined as the proportion of individuals who have never 

consumed an alcoholic beverage. 
WHO Dataset 
We are using the Average daily intake in grams of alcohol among drinkers by country published by WHO 
in the GISAH (Global information system on Alcohol and Health) dataset. It’s by gender and only for 2010. 

 

 Binge drinking 

In the IHME dataset we have access to the prevalence of binge drinking among drinkers. We know from 
previous studies (Sassi, 2015[4]) that binge drinking is highly correlated with level of consumption. We 
then have built a model fitting the global prevalence of binge drinkers from IHME and introducing a 
correlation between alcohol consumption and drinking pattern. 
 
This model on based on the OECD-CPD Alcohol model (Cecchini, Devaux et al. 2015). Pattern of drinking 
depends on the level of consumption. To determine the relationship between binge-drinking and 
quantity of alcohol consumed we are using data from the first wave of the cross-sectional component of 
the NPHS (National Population Health Survey 1994-95) (Statistics Canada 2012b) and several waves of 



22 │   
 

 

 

 

 
 

  
 

This project has received funding from the european union’s horizon 2020  
research and innovation programme under grant agreement no 643576. 

 

Page 22 of 56 

 

the CCHS (Canadian Community Health Survey from 2000-01 to 2008-09) (Statistics Canada, 2012a). 
These cross-sectional surveys collect information related to health status, health care utilisation and 
health determinants for the Canadian population. They rely upon a large sample of respondents and are 
designed to provide reliable estimates at the health region level. The survey component on alcohol cover 
adults aged 15 and above.  
 
From the survey’s answers we are able to tabulate the probabilities of being a binger by category of 
quantity of alcohol consumed and by gender and age group. 
 

Table 3.1 Pattern of drinking by category of quantity of alcohol consumed and by gender and age group, Canada  
Male Female 

 
15-19 20-29 30-44 45-64 65+ 15-19 20-29 30-44 45-64 65+ 

0g/day - 5g/day 19% 22% 1% 11% 3% 13% 12% 4% 2% 1% 

5g/day - 10g/day 44% 40% 2% 25% 7% 32% 30% 13% 8% 2% 

10g/day - 20g/day 67% 66% 4% 47% 10% 66% 56% 32% 18% 4% 

20g/day - 30g/day 81% 83% 6% 70% 20% 78% 77% 55% 36% 8% 

30g/day - 40g/day 82% 91% 7% 83% 47% 83% 87% 71% 57% 35% 

60g/day - 60g/day 93% 93% 8% 88% 46% 86% 89% 79% 63% 26% 

+ 60g/day 96% 97% 9% 95% 95% 93% 97% 87% 93% 85% 

 
We have then converted Table 3.1 into relative risks and used them to model the relationship 

between binge-drinking and quantity of alcohol consumed, assuming that this relationship is the same 
for all the EU countries. Using relative risk allow us to calibrate the probability of being a binger relatively 
to the alcohol consumption in fitting the average prevalence of binge drinking among the drinkers by age 
and gender (IHME).  

 Data corrections 

We observe some inconsistencies in the IHM dataset. We have decided to rescale the data under the 
following assumptions: 

3.2.3.1. Life Abstainer: 

In the IHME dataset we do not observe that Life Abstainer + Current Drinker + Former Drinker = 100% as 
we should expect. To deal with this inconsistency we have use the following approach: 

Before age 10: No Alcohol consumption. LifeTime Abstainer is set to 100%, and all the other 
categories to 0. 

- After age 18: We use the lifetime abstainer proportion from IHME data, and we rescaled Former 
and current to match 100% 

- Between age 10 and 18, we linear interpolate the value of life time abstainer on age, we rescale 
the proportion of former drinker and current drinker to match 100%. 

 

3.2.3.2. Alcohol Consumption (g/day) 

To take into account unrecorded alcohol consumption we have rescaled IHME average consumption 
(by age) to match the average alcohol consumption for adults published by WHO. We have based this 
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rescaling on 2010 (where both IHME and WHO are available). We have assumed an absolute, gender 
specific, adjustment. In other words we keep the age distribution from IHME and we adjust the level 
based on WHO data. 

 Model 

Alcohol is modelled through two dimensions: alcohol consumption (g/day) and pattern of drinking 
(binge-drinking).  

For current drinkers, alcohol consumption is modelled with a truncated gamma distribution. 
According to (Rehm et al., 2003[5]) the gamma distribution is a good candidate for modelling alcohol 
consumption.  

The gamma distribution is parametrized using the average alcohol consumption, 𝑥̅, by age, gender 
and gender for every country. Based on results from (Kehoe, Gmel et al. 2012) we have calibrated the 
relationship between θ (the scale parameter of the Gamma distribution) and 𝑥̅ with a power function. 

𝐴𝐶(𝑥) =
Γ(x, k, θ)

Γ(200, k, θ)
 

θ = exp(0.8907 ln(𝑥̅) +  0.7001) , 𝑘 =  
𝑥̅ 

θ
 

3.2.4.1. Drinking Initiation 

A drinking initiation event is assigned to every individual. The event can only happened between 12 
and 30 years old (after 30, the individual remains life-abstainer). The date of the event is calibrated to 
match the evolution of the life-abstainer curve. 

Once the individual has passed the initiation event, his alcohol consumption is refreshed every year 
(at his anniversary). 

3.2.4.2. Alcohol consumption and former drinker 

Every individual maintain their positions in the evolving distribution of alcohol consumption. 
The update of the alcohol consumption is made in two steps: 
- Former drinker: made on a random basis based on the prevalence of former drinkers. If he is a 

former drinker his consumption is set to 0 for the 12 months.  
- Daily consumption: determined on the basis of the individual’s position on the gamma 

distribution.  

3.2.4.3. Binge drinking 

Every individual is assigned with a second quantile which determines his likelihood of being a binger. 
The two quantiles, the one for alcohol consumption  q1  and the one for binge drinking q2  are 
independent –the correlation between consumption and binge drinking is included through the joint 
distribution computed as explained in 3.2.2.  

AC = F−1(q1), Binger = {q2 < pbinger), pBinger = f(AC) 

 Baseline risk and Relative Risk 

We have used different relative risks from GDB-105 (2016)and from OECD-CDP Alcohol model 
(Cecchini, Devaux and Sassi, 2015[6]). As explained in (GBD Collaborators, 2016[7]), “due to data 
availability, for high levels of consumption, uncertainty in the relative risk functions increases greatly. 
To minimize the uncertainty of these measures, relative risks were estimated up to the 90th percentile 
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of exposures in men (85 g/day) and the 95th percentile of exposures in women (60 g/day). For 
exposures beyond this, the associated relative risk was carried forward from these chosen percentile 
exposure levels. Though a dose-response relationship is evident at higher levels of exposure, the shape 
of the relative risk function is highly uncertain for higher levels of exposure both due to a lack of 
observations at these exposure levels, as well as confounding variables affecting estimation of the 
relative risk of these populations. Thusly, our relative risk estimates are likely an underestimate for the 
top 10% of male exposures and 5% of female exposures.” 

The theoretical minimum exposure measure is set to 1 for life abstainer. We also assume that former 
drinkers have a relative risk equals to 1. 
 

Figure 3.1 Alcohol relative risks, for male aged 50. 

 

 

Source: IHME – GBD 2015 and OECD CDP Alcohol (2015) 

As seen in Figure 3.1Erreur ! Source du renvoi introuvable., moderate consumption of alcohol may have 
a protective effect. We made the hypothesis that this protective effect doesn’t exist anymore for bingers. 
The relative risk is then the maximum between 1 and the original relative risk. For injuries, we assume 
only bingers are at risk, relative risk is set to 1 for every non-binger. 
 

3.2.5.1. For chronic conditions 

We include binge drinking only when there is a protective effect. The formula is then the 
following 

𝐵𝑅 =
1

𝑃𝑙𝑎 + 𝑃𝑓 + 𝑃𝐶𝐷 ∫ (𝑃𝐵(𝑥)𝐴𝐶(𝑥) max(1, 𝑅𝑅(𝑥)) + (1 − 𝑃𝐵(𝑥))𝐴𝐶(𝑥)𝑅𝑅(𝑥))  𝑑𝑥
200

0
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- 𝑃𝑙𝑎 Prevalence of lifetime abstainers 
- 𝑃𝑓 Prevalence of former drinkers 

- 𝑃𝐶𝐷 Prevalence of current drinkers 
- 𝑃𝐵(𝑥) Prevalence of binger for the level of consumption x 
- 𝐴𝐶(𝑥) Density function for alcohol consumption 
- 𝑅𝑅(𝑥) Relative risk function for current drinkers 

3.2.5.2. For injuries 

Only bingers are assumed to be at risk, the baseline risk is then: 

𝐵𝑅 =
1

𝑃𝑙𝑎 + 𝑃𝑓 + 𝑃𝐶𝐷 ∫ (𝑃𝐵(𝑥)𝐴𝐶(𝑥)𝑅𝑅(𝑥) + (1 − 𝑃𝐵(𝑥))𝐴𝐶(𝑥))  𝑑𝑥
200

0

 

Where: 

- 𝑅𝑅(𝑥) Relative risk function for current drinkers 

 Blood Pressure 

 Data 

NCD RISC Dataset (published in the Lancet in 2016).  
- Timeframe: 1975 – 2014 
- Country coverage: most of the country in the world 
- Description: average systolic and diastolic blood pressure and proportion of people with SBP > 

140 by age group (18-19, 20-24, …, 80-84, 85+)-and gender. 

 Model 

Blood pressure is modelled with a log-normal distribution.  
𝑆𝐵𝑃(𝑛, 𝑦)  ↝ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝜎̂(𝑛, 𝑦), 𝜇̂(𝑛, 𝑦)) 

To fit the parameters of the log-normal distribution, we are only using the average systolic blood 

pressure, 𝑆𝐵𝑃, and proportion of people with high blood pressure, 𝑃𝐵𝑃>140. The naïve fitting of the log 

normal distribution, for each data pair (𝑆𝐵𝑃, 𝑃𝐵𝑃>140), a unique pair mean and standard deviation, is 
not satisfying (leading to some implausible distributions). We then decided to constraint the evolution of 
the standard deviation by age. For each year, we have optimized the following system: 

min
𝜆(𝑦)

∑ (𝑆𝐵𝑃 − 𝑒𝜇̂(𝑛,𝑦)−
1
2

𝜎2̂(𝑛,𝑦) )
2

𝑛

 

𝜎̂(𝑛, 𝑦) =  𝜎0 + 𝜆(𝑦) ∙ (𝑛 − 𝑛0) 
𝜇̂(𝑛, 𝑦) =  ln(140) − Φ−1(1 −  𝑃𝐵𝑃>140) 

 

𝑛0 is the first available age (here 18) and 𝜎0 is computed to match the data (𝑆𝐵𝑃, 𝑃𝐵𝑃>140) for the first 
available age group (here 18-19).  

 
Figure 3.2: Fitting gamma distribution on average blood pressure and share of people with raised blood pressure, 

(Dataset: France – female – 2015) 
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This methodology puts more weight in fitting the percentage of high blood pressure than the average 
systolic blood pressure, and assumes the deviation of blood pressure depends linearly on age.  

 
Figure 3.3: Systolic blood pressure: fitted gamma distribution for different age (for France, female, 2015)

 
 
 
Blood pressure rises with age. An individual at the 50th percentile has its blood pressure raised from 107 
at 20, to 117 at 45 and to 134 at 65. 
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 Relative risks for BMI are provided by IHME through a linear function (scale depends on 
age).  

Figure 3.4: Relative risk for blood pressure, male and female aged 50, source IHME – GBD2015 

 

Source: IHME – GBD 2015 

 

For each disease, the baseline risk is computed as following: 

𝐵𝑅 =
1

∫ 𝑅𝑅(𝑥)𝑑𝐵𝑃(𝑥)
250
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 BMI 

 Data 

NCD RISC Dataset (published in the Lancet in 2016).  
- Timeframe: 1975 – 2014 
- Country coverage: most of the world’s countries. 
- Description: prevalence of 7 categories of BMI by gender and age-groups. 

 Model 

BMI is modelled as a continuous variable with a cumulative distribution function piecewise linear 
(calibrated in order to match the prevalence of the 7 BMI categories available). We use 10 and 150 for 
BMI boundaries.  
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It was not possible to find a simple functional form which matched the level of both obesity and 
morbid obesity. As the categories of BMI are quite small, a uniform distribution inside the categories is a 
coherent assumption.  
 

Figure 3.5: BMI, cumulative density, Latvia 2014 (65-70) 

 

Source: NCD RISC (2016) 

 

 Relative risks and baseline risk  

The relative risk is provided by (2016) through a linear function.  

Figure 3.6 Relative risk for BMI, female aged 50, source IHME – GBD2015 
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Source: IHME – GBD 2015 

 

For each disease, the baseline risk is computed as following: 

𝐵𝑅 =
1

∫ 𝑅𝑅(𝑥)𝑑𝐵𝑀𝐼(𝑥)
150

10

 

 Physical Activity 

 Data 

We are using the data from GDB 2015  (Institute for Health Metrics and Evaluation (IHME),(n.d.)[8]). 
They measure the average weekly physical activity at work, at home, transport related and recreational 
measured by MET min per week. We have access to the prevalence –by gender, age-group, and every 5 
year (1990-2015) - of the 4 categories described below1: 

- Inactive (bellow 600 METs) 
- Low active (between 600METs/week and 4000 METs/week) 
- Moderately active (between 4000 METs and 8000 METs/week) 
- Highly active (more than 8000METs/week). 

 Model 

Physical activity is modelled through the average weekly physical activity at work, at home, transport 
related and recreational measured in METs/week  as a continuous variable with a cumulative distribution 
function piecewise linear (calibrated in order to match the prevalence of the 4  categories available). We 
use 400 and 10000 METs/week for physical activity boundaries.  

                                                           
1  600 METs a week corresponds to WHO guidelines for physical activity: 150 minutes of moderate 

activity or 75 minutes of intense activity. 
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Figure 3.7: Physical activity, cumulative density (Czech Republic, 2015, 50-55) 

 

Source: IHME – GBD 2015 

 Relative risks and baseline risk  

The relative risk are provided by (2016) by categories of physical activity level. 
 

Table 3.2: Relative risk for categories of physical activity (Male and Female aged 50-55) 

 Inactive Low active 
Moderately 
active 

Highly 
active 

Colorectal Cancer 1.293 1.172 1.067 1 

Breast Cancer 1.159 1.12 1.09 1 

Myocardial Infarction 1.301 1.103 1.019 1 

Ischemic Stroke 1.349 1.142 1.098 1 

Diabetes 1.387 1.189 1.037 1 

Source: IHME – GBD 2015 

For each disease, the baseline risk is computed as following: 

𝐵𝑅 =
1

∑ 𝑅𝑅𝑃𝐴 𝑙𝑒𝑣𝑒𝑙 ∙ 𝑃(𝑃𝐴 𝑙𝑒𝑣𝑒𝑙)
 

  Smoking 

 Data 

We are using the data from GDB IHME2015 –Tobacco Visualization (Institute for Health Metrics and 
Evaluation (IHME),(n.d.)[9]). They provide the prevalence of daily smokers by gender and  age-group from 
1980 to 2015 (every 5 years). 

 Model 
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Smoking is modelled as a dichotomous variable, smoker/non-smoker. A quantile is assigned to every 
individual at the beginning of its life and remains the same during its entire life. Every time year or age 
changed we compare the value of this quantile to the prevalence of smokers. If it is below the individual 
is defined as “current smoker”. 

 Relative risks and baseline risk  

We used relative risk published in the GDB 2015 study (GBD Collaborators, 2016[7]) (for CVD’s), and 
from DYNAMO-HIA (for COPDs and Cancers). In GDB 2015, relative risks are defined for smokers/non-
smokers, whereas in DYNAMO-HIA they are described for Never Smoker/ Former Smoker/Smoker. As we 
don’t really model the longitudinal trajectories of smoking, plus as we don’t have access to never smoker 
in IHME database, we have preferred to convert those last relative risks into (smokers/non-smokers) 
using prevalence also published by DYNAMO-HIA. This assumption leads to underestimate the impact of 
tobacco’s reduction policies. 

 
Table 3.3: Relative risks for smoking 

Disease Source RR Smoker vs non-smoker 
Female 

RR Smoker vs non-smoker 
Male  

Diabetes GBD 1.426 1.102 

Stroke GBD 2.882 3.777 

IHD GBD 2.952 3.843 

COPD DYNAMO-HIA 3.768 4.46 

Oesophagus Cancer DYNAMO-HIA 2.296 5.061 

Lung Cancer DYNAMO-HIA 3.871 6.643 

 For each disease, the baseline risk is computed as following: 

𝐵𝑅 =
1

𝑃(𝑁𝑜𝑛𝑆𝑚𝑜𝑘𝑒𝑟) + 𝑅𝑅 𝑃(𝑆𝑚𝑜𝑘𝑒𝑟)
 

 

4.  Data and Methods: Cost of illnesses calculations, to include in the microsimulation 
model 

 General estimation approach  

Our goal is to predict the total medical costs, for each patient, conditional on age, gender, and the 
FRESHER disease status. In a first step, we decided to use 3 “sources” countries (Estonia, France, 
Netherlands), for the 3 areas of FRESHER. What follows concerns the methodology applied in the French 
dataset, but a similar methodology has been used for the two other sources countries.    

 
The general cost formula is as follows: 
 

deathextra,icomorbextra,imainextra,iresidual,itotal,i CostCostCostCostCost        (1) 
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For a person i with no FRESHER- modelled diseases, the total medical costs will be equal to what we 
call the age and gender-specific residual costs. It is important to emphasize that this component does not 
apply to completely healthy people, but rather is an average of medical costs for those who do not have 
any FRESHER-modelled diseases.  If people have only one FRESHER-defined disease, their total cost will 
be equal to the sum of their predicted residual cost and the predicted extra cost of having this disease. If 
people have two diseases, the comorbidity cost component will also be added to this sum, as explained 
below. Due to the data limitations, the comorbidity component does not take into account more than 
two explicit diseases. 

 

Box 4.1. Defining main diseases and comorbidities 

For our modelling purposes, we assume that the “main disease” (the extra costs for 
which are estimated as described in section 4.2.1 below) is the most recently diagnosed 
one, and the “comorbidity” (the extra costs for which are estimated in step 4.2.2) is a 
disease which was diagnosed earlier. For example, if a person has had diabetes for 
several years, and was diagnosed with cancer this year, then we would first estimate 
the extra cost of having a “main disease”- cancer (in the sample with comorbidities) as 
in section 4.2.1, and then estimate the extra cost of having a comorbidity-diabetes- in 
the presence of cancer, as in equation (8). 

 
In principle, one could predict the total medical costs –also including out-of-pocket spending–  for 

each person i by estimating the parameters in the two-way interaction model (for both genders 
separately) as described in  (Cortaredona and Ventelou, 2017[10]) :  

 
ln(𝐶𝑜𝑠𝑡𝑖) = 𝛼 + β ∙ 𝑎𝑔𝑒𝑖 + 𝛾𝑘 ∙ 𝐷𝑖,𝑘 + 𝛾𝑗 ∙ 𝐷𝑖,𝑗 + 𝛾𝑘𝑗 ∙ 𝐷𝑖,𝑘 ∙ 𝐷𝑖,𝑗 + 𝜀𝑖    (2) 

 
Where Costi is a total medical cost, defined as follows: 
 
“In a bottom-up design, units of health care are used on a patient level and are multiplied with a price 

for this unit. All individual health expenditures are then summed up to calculate total cost of the disease 
(Cortaredona and Ventelou, 2017[10])” 

 
In addition, agei corresponds to age; 𝐷𝑖,𝑘 = 1 if individual 𝑖 suffers from illness 𝑘, =0 otherwise. It 

follows that 𝐷𝑖,𝑘 ∙ 𝐷𝑖,𝑗 = 1 if 𝐷𝑖,𝑘 = 𝐷𝑖,𝑗 = 1, i.e.: if individual 𝑖 suffers simultaneously from illness 𝑘 and 

illness 𝑗, and εi is an error term. The intercept α represents the predicted medical cost for a person aged 
18-39, without any diagnosed FRESHER disease (=residual cost).  

 
Model (2) can be estimated using the sample of people with positive costs using multivariate gamma 

regression with a log link (see (Thiébaut, Barnay and Ventelou, 2013[11]))for the choice on appropriate 
econometric specification for France).  

 
For example, the total predicted medical cost for a person aged 55 with no FRESHER diseases and 

with positive costs would be equal to: 
 

E(C|C>0)= exp (𝛼̂ + 𝛽̂50−55) 
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For a person with diabetes of the same age, the total predicted cost in this sample would be equal 
to: 

 

E(C|C>0, diabetes=1)= exp(𝛼̂ + 𝛽̂50−55 + 𝛾𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠) 
 
For a person with both diabetes and cancer, the total cost in the sample of people with positive costs 

can be predicted as: 
 

E(C|C>0, diabetes=1; cancer=1)= exp(𝛼̂ + 𝛽̂50−55 + 𝛾𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠 + 𝛾𝑐𝑎𝑛𝑐𝑒r + 𝛾𝑐𝑎𝑛𝑐𝑒𝑟∗𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠) 
 
To make sure that these predicted costs are representative not just of the people with positive 

medical costs, but of all the people with the diagnosed conditions2, an adjustment should be made by 
multiplying these costs by the probability of having positive medical costs. For example, the total 
predicted cost for a person with diabetes is: 

 
E(C|diabetes=1)= P(C>0)*E(C|C>0, diabetes=1) 
 
The first part of this two-part model estimator can be estimated using logit regression: 
 

𝑃(𝐶 > 0) = Φ(a + b ∙ AGEcat) 
 
where Φ is the cumulative standard logistic distribution function. 
 
We will explain later the rationale for why we estimate the probability P(C>0), rather than 

P(C>0|diabetes=1). 
 
The practical problem with estimating model (2) is that the sample size for several conditions in the 

Échantillon généraliste des bénéficiaires (EGB), the dataset available in France, is too small for two-part 
model estimation with interactions. Predicting costs using model (2) is even more problematic if we want 
to take into account the information on the length of time since diagnosis contained in the EGB dataset. 
Therefore, it was decided that the total medical costs in France (and, for consistency, in all other 
countries) will be predicted by separately estimating each component listed in equation (1), as described 
in the sections that follow.  

 

 Cost component estimation 

 Extra cost of disease:  

As discussed in  (Cortaredona and Ventelou, 2017[10]) , extra disease costs are estimated as “the mean 
marginal difference of the predicted outcome with a disease variable switched on or off”. There are two 
different (but related) approaches, depending on whether there was chronic disease comorbidity.  

 

                                                           
2 This adjustment is necessary because not all diagnosed people will incur positive medical 

expenditures. 

mainextraCost ,
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In general, average medical cost for any age and gender can be predicted as follows: 
 
𝐸(C) = 𝑃(C > 0)*E(C|C > 0)+ 𝑃(C=0)*𝐸(C|C = 0) = 𝑃(C > 0)*𝐸(C|C > 0)    (3) 
 
The extra cost of a disease can therefore be estimated, for a given gender and age group, as the 

difference in the predicted costs, conditional on the disease status: 
 
𝐶𝑜𝑠𝑡̂𝑒𝑥𝑡𝑟𝑎= 𝑃(C>0|disease=1)*E(C|C >0,disease=1)- 𝑃(C>0|disease=0)*𝐸(C|C>0,disease=0)  (4) 
 
Another way to think about the first part of this formula is that E(C|C>0,disease=1) component is 

representative of the population with a given disease who have positive medical expenditures, while 
multiplication by 𝑃(C>0|disease=1) factor makes such costs representative of the medically diagnosed 
population with a disease (who may or may not have positive medical expenditures).  

 
Estimating the first part (i.e. the probability) components of the two-part model (4) is however 

complicated, because for a number of diseases in France (and for all diseases in Estonia), the disease 
definition in the administrative data depended on whether positive costs were reported. Therefore, 
estimating 𝑃(C>0|disease=1) was generally impossible. Even when this was not strictly the case (i.e. when 
a small proportion of patients with a disease had zero costs as in France), it was decided that estimating 
P(C > 0|disease=1) was not a feasible option because the disease definition was strongly endogenous to 
the probability of having nonzero expenditures3.  

 
Using (3) and (4), we are able to estimate the extra costs of diseases using the following formula: 
 

)disease,C|C(E)C(P)disease,C|C(E)C(PĈĈ disease|disease| 00010001     (5) 

 
Equation (5) was estimated in two samples:  
 
a) Without any comorbidity (i.e., predicted average costs were compared among patients with a 

disease and without a disease, in the sample with no other chronic diseases, whether FRESHER-defined, 
or any other chronic conditions), and 

 

                                                           
3 As one can see, the first part probability is predicted unconditional of the disease status (but 

conditional of age). This is not ideal, because the probability of having non-zero costs is likely to be 
higher in the sample of sick people than in the sample of healthy people.  To deal with this, one could 
have assumed, for example, that the probability of having non-zero expenditures was equal to 1 in the 
sample of people with a disease. However, this assumption is arbitrary and it might lead to cost 
overestimation. On the other hand, our decision to use 𝑃(C>0) probability in the first part is likely to 
lead to a more conservative extra cost estimation.  

In any case, our estimates suggest that the difference between these probabilities is relatively small 
in the middle ages and for the elderly (i.e., in the 50-90 y.o group), especially among women (e.g., 
P(C>0|d=0, females, age=60-64)=0.94; P(C>0|d=1, females, age=60-64)=0.99; P(C>0|d=0, males, 
age=60-64)=0.98; P(C>0|d=1,  males, age=60-64)=0.90. In the samples with at least one comorbidity, 
there is very little difference in the predicted probabilities depending on the main disease status. 
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b) In the sample with at least one comorbidity (whether FRESHER-defined, or any other chronic 
conditions), the predicted costs for patients without a disease of interest were subtracted from predicted 
costs for patients with a disease of interest.  

 
The parameters in the second part of the two part model as described by equation (5) were estimated 

similar to model (2), but without the interactions, and with a dummy for a given disease of interest (rather 
than for a vector of diseases): 

 
ln(𝐶𝑜𝑠𝑡𝑖) = 𝛼 + β ∙ 𝑎𝑔𝑒𝑖 + 𝛾𝑘 ∙ 𝐷𝑖,𝑘 + 𝜀𝑖        (6) 
 
For example, the extra cost of diabetes for a woman aged 55 is predicted using parameters estimated 

in model (5) as follows (separately for samples with and without any comorbidities):  
 

 

= Φ(â + b̂50−55) × [exp(𝛼̂ + 𝛽̂50−55 + 𝛾𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠) − exp(𝛼̂ + 𝛽̂50−55)] 

⟺ 
 
 

𝐶𝑜𝑠𝑡̂𝑒𝑥𝑡𝑟𝑎 =
exp(â+𝑏̂50−55)

1+(â+𝑏̂50−55)
× [exp(𝛼̂ + 𝛽̂50−55 + 𝛾𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠) − exp(𝛼̂ + 𝛽̂50−55)]  (7) 

 
 

 Extra cost of comorbidity:  

The extra (extra) cost of comorbidity is estimated as the difference in the predicted costs for patients 
with both the “main” disease and comorbidity (as defined above) versus the predicted cost for patients 
with just a “main” disease: 

 
𝐶𝑜𝑠𝑡̂𝑐𝑜𝑚𝑜𝑟𝑏 =  

)1,0,0|()0()1,1,0|()0(  diseasecomorbCCECPdiseasecomorbCCECP  (8) 

 
The parameters for this equation are estimated using a model similar to (2) shown above, i.e. 

including not only the main disease parameters, but also their interactions. However, as already 
mentioned, we could not estimate this model for every single disease, nor could we take into account 
the length of time since diagnosis because of the sample size limitations. Therefore at this step, we had 
to combine several diseases into groups (e.g. this applied to both types of strokes and all cancers). In 
addition, to reduce potential for residual confounding, a dummy was also included to control for long-
term non-FRESHER chronic diseases in the case of Estonia and France analyses. An intercept in this model 
thus represents an average costs for people without any chronic diseases for people aged 18-39.  

 
 
 
 
 

comorbextraCost ,
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 Extra cost of death:  

In the French case, extra cost of death was estimated using a   similar two-part modelling approach, 
as the mean marginal difference of the predicted outcome (total health expenditure in 2014) with a death 
dummy (corresponding to dying in the first semester of 2015) switched on or off. As the data on costs 
accumulated throughout 2014 was available, and the information on whether a person died was provided 
for 2015 as well, this difference was estimated for people who died in the first semester of 2015, 
compared to the people who stayed alive in the same period. Including people who died in the second 
semester of 2015 in the analysis was ruled out because the date of death for them was too far away from 
2014, and therefore it was likely that the extra cost of death would be underestimated for them.  

 
We conducted this analysis separately for two samples: with at least one FRESHER-defined NCD, and 

without any NCDs. These costs were then added on top of the other medical expenditures. To avoid the 
issue of potential double-counting of the death-related costs, the main cost analysis was restricted to the 
people who were still alive on 31 December 2014, and therefore proportion of those who died in the first 
semester of 2015 was small in relation to the total. In Estonia, the Netherlands and the UK, it was 
impossible to estimate extra deaths costs using this approach due to data limitations, and therefore for 
these countries they were extrapolated from the French ones using the approach described below.  

 

 Residual cost and related issues 

 
We estimate age- and gender-specific average residual costs by restricting the sample to people who 

had no FRESHER- defined diagnosed diseases (but could have other diagnosed conditions, including 
chronic ones). Such people may or may not have had zero health expenditures.  

 
A potential complication is that in FRESHER simulations, people are assigned disease status based 

mostly on IHME epidemiological prevalence (with some additional calibrations as appropriate), which 
may well be different from the administrative dataset-based prevalence. In France, the administrative 
dataset is nationally representative and includes all people covered by national health insurance (both 
consumers and non-consumers). It may thus inappropriately classify people with undiagnosed FRESHER 
conditions as being “healthy”, whose costs will therefore be part of the residual costs by definition. In 
Estonia, the sample is restricted to users of healthcare, plus the artificial sample based on the Estonia 
Census to add age groups which are representative of the national age-gender distribution. Therefore, 
Estonia analytical sample may also include people who have undiagnosed FRESHER conditions, and 
whose costs will form part of the residual costs. Such costs will also not be captured when estimating the 
extra cost of disease as described in section 4.2.1.   

 
One potential way to deal with this is to assume that IHME-based prevalence reflects “correct” 

epidemiological prevalence (i.e. including both diagnosed and undiagnosed cases). Under this 
assumption, we could in theory adjust the predicted costs of disease by multiplying it by some factor 
based on the difference between “diagnosed” and “real” prevalence. If we find, for example, that for 
women aged 50-59, the prevalence of diabetes based on administrative data is 10%, while IHME-based 
prevalence is 12%, then we could multiply the estimated extra cost of disease in this group by 10/12=0.83, 
to make sure that such costs are representative of women who are both diagnosed and undiagnosed. 
Alternatively, we could assume that the extra disease cost equals zero for the proportion of people who 

deathextraCost ,
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is undiagnosed according to IHME data. Likewise, we could re-categorize our residual costs accordingly, 
which is likely to increase residual costs because a number of cases with zero expenditures will be 
reduced. Therefore the net effect on the total costs is ambiguous.  

 
Nevertheless, it is not certain that IHME-estimated disease prevalence is necessarily superior to the 

administratively-derived one, as it relies on data of varying quality and methodological basis (e.g. it can 
be based on multiple sources of survey data, with additional assumptions to correct for self-reporting 
bias). Some analysis (see below) shows that for example in France, age and gender-specific prevalence of 
diabetes and of several cancers is higher in the administrative than in the IHME dataset, which suggests 
this divergence may not be due to the inclusion of undiagnosed cases in IHME data. Although in some 
other cases, the prevalence was considerably higher in the IHME dataset, this was mostly true at the 
oldest and the youngest ages, where IHME estimation methodology might rely on too little data and on 
too many assumptions. In addition, at the oldest ages (generally older than 60-70), where the prevalence 
rates diverge the most, the absolute numbers of affected people gets lower with each year of life, 
therefore the total impact on costs is more limited than the actual graph may suggest. Therefore, we 
prefer not to further adjust the extra disease/residual costs. Besides, since we are interested mostly in 
the “delta effect” of different interventions/scenario comparisons, the potential overestimation issue 
stemming from assigning the estimated costs to the undiagnosed cases is probably of minor significance.  

 
 
 
 
 
 
 
 

Figure 4.1. Diabetes prevalence by gender, France 
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Figure 4.2. Lung cancer prevalence by gender, France 

 
 
 
 
 
 
 
 

Figure 4.3. Colorectal cancer prevalence by gender, France 
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Figure 4.4. Breast cancer prevalence, France 

 
 
 
 
 
 
 
 

Figure 4.5. COPD prevalence by gender, France 
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 Cost extrapolation to other countries 

The annual disease costs were estimated for the three anchor countries (France, Estonia and the 
Netherlands), and then extrapolated to three EU regions: Southern Europe; Central/Eastern Europe and 
Northern Europe. As per the Grant Agreement, the EU member countries were grouped into regions as 
follows (anchor country highlighted in bold):  

 

 Southern Europe (Croatia, Cyprus, France, Greece, Italy, Malta, Portugal, Slovenia and Spain); 

 Central/Eastern Europe (Bulgaria, Poland, Romania, Slovakia, Estonia, Hungary, Latvia and 
Lithuania);  

 Northern Europe (Austria, Belgium, Czech Republic, Denmark, Finland, Germany, Ireland, 
Luxembourg, the Netherlands, Sweden and United Kingdom).  

 
Our extrapolation methodology is based on the assumption that the annual treatment cost 

differentials between countries are time-invariant, and that they are mostly driven by the differences in 
two components: cost per unit of treatment received, as well as the population-level intensity of 
treatment provided. For example, the spending per capita for inpatient costs can be broken down as 
follows: 
 
 
  
            (9) 
 

Where  
eargDisch

Spending
can be viewed as the average price per unit of inpatient treatment received, while

Capita

esargDisch
 represents the population-level “intensity” of hospitalization received in a given country. 

Then, one can divide spending per capita for inpatient treatment in country a by spending per capita in 

Capita

esargDisch

eargDisch

Spending

Capita

Spending


Capita

esargDisch

eargDisch

Spending

Capita

Spending

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country b, and multiply the costs in an anchor country by this ratio to extrapolate to a comparator 
country.  
 

Given that the cost of treatment is also determined by other components, we also estimated 
Capita

Spending
 

ratios between countries for outpatient and pharmaceutical costs. For outpatient costs, for example, this 
ratio can be viewed with similar interpretation: 
 
 
            (10) 
 
To estimate these differentials, we used the OECD data4 on the inpatient curative and rehabilitative care 
spending/capita; outpatient curative and rehabilitative care spending/capita; medical goods 
spending/capita. To ensure comparison, we used this data for the same year- 2014, expressed in constant 
prices, OECD base year. 
 

To see that it’s not enough to rely on ratios of the spending per unit of care provided, and that it’s 
also necessary to take into account the treatment intensity component, consider the case of 
extrapolating outpatient costs from France to Portugal.  

 
Table 4.1. Outpatient cost ratio estimation: extrapolating from France to Portugal 

Country 
spending/ 
visit 

visits/ 
capita 

spending/ 
capita 

Ratio, 
incorrect 

Ratio, 
correct 

France 97 6.7 650 

  

Portugal 141 4.1 579 1.45 0.89 
 
*Estimated as a ratio of   in Portugal to France 

 
**Estimated according to formula (10) 

 
The incorrect ratio of 1.45, estimated as the spending/visit ratio of costs, suggests that the outpatient 

costs are considerably higher in Portugal, while the correct ratio suggests that the opposite is true. The 
explanation is that the incorrect ratio does not take into account the population-level intensity of 
outpatient visits, which seem to be considerably higher in France.  

 
After estimating the differentials in these three components, we take them all into account when 

estimating the overall disease-specific conversion factor between countries. It’s possible, for example, 
that diseases in the more acute stage, such as myocardial infarctions and strokes, have a much greater 
inpatient component than for example diabetes.  Therefore, the overall disease-specific conversion factor 
to extrapolate between countries can be represented by the formula:  

 
Conversion factor=          (11) 

                                                           
4 http://stats.oecd.org 

 

Capita
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Where ix  is the ratio of per capita inpatient; outpatient or pharmaceutical spending between 

countries (based on OECD data); iw are the weights assumed to represent treatment proportions for each 

disease. These weights were also obtained based on the OECD SHA data on the expenditure by disease, 
in millions national currency units. For example, for the Netherlands (used for extrapolating in the 
Northern and Southern regions), the following table was estimated:  

 

Table 4.2. Treatment component weights by disease, Netherlands (for Southern and Northern regions extrapolation) 

  Inpatient outpatient pharma Inpatient, % Outpatient, % pharma, % 
Ischemic stroke 3089 915 962 62.20% 18.40% 19.40% 

Haemorrhagic 
stroke 

3089 915 962 62.20% 18.40% 19.40% 

MI 3089 915 962 62.20% 18.40% 19.40% 

Cancers 2492 559 460 71.00% 15.90% 13.10% 

Diabetes 267 503 902 16.00% 30.10% 53.90% 

CKD 1238 347 525 58.70% 16.40% 24.90% 

COPD 783 392 866 38.40% 19.20% 42.40% 

Cirrhosis 991 2290 627 25.40% 58.60% 16.00% 

Depression 5016 659 354 83.20% 10.90% 5.90% 

Neurologic 
disorder 

1882 521 1475 48.50% 13.40% 38.00% 

Alcohol disorder 1026 447 58 67.00% 29.20% 3.80% 

Remaining costs 1 1 1 33.30% 33.30% 33.30% 

Death costs 1 1 1 33.30% 33.30% 33.30% 

 
Of interest are the proportions in the last 3 columns. As one can see, for acute conditions such as 

strokes, MI, cancer and depression, inpatient costs indeed account for a large proportion of total medical 
costs. On the other hand, for diseases that are more chronic in nature, such as diabetes and COPD, 
pharmaceutical component plays a greater role. For simplicity (and due to the lack of information), we 
assumed that the differentials in residual and death-related costs between countries were equally driven 
by the differentials in the three separate components: Inpatient, Outpatient, Pharma. In addition, we 
assumed that in the first year of diagnosis, the differentials in more acute conditions such as strokes, MI 
and cancer, were driven entirely by the differentials in hospitalization costs. In the subsequent years, we 
assumed the weights given in Tables 4 and 5 for all conditions. 

 
For the Central/Eastern EU regions, we used the weights estimated using the SHA OECD data for 

Hungary: 
 
Table 4.3. Treatment component weights by disease, Hungary (for Central/Eastern EU region extrapolation)  

Inpatient outpatient pharma Inpatient, 
% 

Outpatient
, % 

pharma, % 

Ischemic stroke 106439 37635 155082 35.60% 12.60% 51.80% 

Haemorrhagic 
stroke 

106439 37635 155082 35.60% 12.60% 51.80% 
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MI 106439 37635 155082 35.60% 12.60% 51.80% 

Cancers 59426 10315 59411 46.00% 8.00% 46.00% 

Diabetes 10506 10325 77951 10.60% 10.50% 78.90% 

CKD 24620 10859 18370 45.70% 20.20% 34.10% 

COPD 32963 16575 44632 35.00% 17.60% 47.40% 

Cirrhosis 32435 32154 36641 32.00% 31.80% 36.20% 

Depression 29783 12733 40703 35.80% 15.30% 48.90% 

Neurologic 
disorder 

14500 5223 23907 33.20% 12.00% 54.80% 

Alcohol disorder 32647 12219 5780 64.50% 24.10% 11.40% 

Remaining costs 1 1 1 33.30% 33.30% 33.30% 

Death costs 1 1 1 33.30% 33.30% 33.30% 

 
Finally, conversion weights were estimated according to formula 11, and are shown below for the 

Southern region (Table 4.5) and for the Central/Eastern region (Table 4.6). 
 
Table 4.4. Conversion factors from France to Southern region (weights based on Dutch SHA data)  

Italy Portugal Greece Malta Slovenia Spain Cyprus Croatia 

Ischemic stroke 0.668 0.407 0.508 0.508 0.462 0.603 0.508 0.508 

Haemorrhagic stroke 0.668 0.407 0.508 0.508 0.462 0.603 0.508 0.508 

MI 0.668 0.407 0.508 0.508 0.462 0.603 0.508 0.508 

Cancers 0.665 0.383 0.508 0.508 0.454 0.58 0.508 0.508 

Diabetes 0.683 0.528 0.507 0.507 0.507 0.72 0.507 0.507 

CKD 0.665 0.402 0.512 0.512 0.462 0.602 0.512 0.512 

COPD 0.669 0.444 0.515 0.515 0.479 0.645 0.515 0.515 

Cirrhosis 0.723 0.654 0.462 0.462 0.533 0.806 0.462 0.462 

Depression 0.658 0.341 0.511 0.511 0.44 0.542 0.511 0.511 

Neurologic disorder 0.661 0.402 0.52 0.52 0.466 0.607 0.52 0.52 

Alcohol disorder 0.683 0.453 0.49 0.49 0.472 0.634 0.49 0.49 

Remaining costs 0.688 0.52 0.496 0.496 0.499 0.703 0.496 0.496 

Death costs 0.688 0.52 0.496 0.496 0.499 0.703 0.496 0.496 

Note: Add the note here. If you do not need a note, please delete this line. 
Source: Add the source here. If you do not need a source, please delete this line.  

 

Table 4.5. Conversion factors from Estonia to the other countries in Eastern/Central region (disease weights based on 
Hungary SHA data). 

 Bulgaria Poland Romania Slovakia Hungary Latvia Lithuania 

Ischemic stroke 1.335 1.092 1.335 1.562 1.335 0.833 0.833 

Haemorrhagic stroke 1.335 1.092 1.335 1.562 1.335 0.833 0.833 

MI 1.335 1.092 1.335 1.562 1.335 0.833 0.833 

Cancers 1.322 1.13 1.322 1.546 1.322 0.815 0.815 

Diabetes 1.472 1.053 1.472 1.736 1.472 0.944 0.944 

CKD 1.225 1.083 1.225 1.42 1.225 0.753 0.753 
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COPD 1.297 1.072 1.297 1.512 1.297 0.81 0.81 

Cirrhosis 1.197 1.012 1.197 1.381 1.197 0.749 0.749 

Depression 1.312 1.082 1.312 1.532 1.312 0.818 0.818 

Neurologic disorder 1.351 1.09 1.351 1.582 1.351 0.846 0.846 

Alcohol disorder 1.102 1.103 1.102 1.264 1.102 0.658 0.658 

Remaining costs 1.178 1.008 1.178 1.357 1.178 0.736 0.736 

Death costs 1.178 1.008 1.178 1.357 1.178 0.736 0.736 

 

 

 OTHER Modelling issues 

  General issues 

 
Due to the data constraints, for individuals before the age of 18, all the costs are assumed to be zero. 

This is not likely to be a major concern because we are interested in modelling the costs for diseases that 
have very low prevalence in these age groups (this was also clear from the disease prevalence graphs we 
referred to, earlier). 

 
In general, we used cost estimates split by two broad age groups: 18-65 and 65+ years, to ensure that 

we have sufficient sample size for parameter estimation. We have made the exception for myocardial 
infarction,  breast cancer, diabetes, COPD and depression, using the narrower age groups (18-39; 40-49; 
50-59; 60-64; 65-69; 70-74; 75-79; 80-84; 85-89; 90). This was made possible by the larger sample size 
owing to greater than 1% prevalence of these conditions in the population.  

 
Because of the data limitations, when a person is modelled to have 3 or more conditions, the costs 

for only 2 are included in the model: the main one (always the most recent) and the comorbidity, i.e. the 
latest previous one not being in the same disease group (e.g. another cancer or stroke type). When two 
diseases have thus been assigned a role, the model will keep this arrangement until the occurrence of a 
new condition, which will become the “main one”.  

 
For the people who died, in the last year of life, we assumed that they will accumulate only half of 

their extra residual and disease costs.  
 
The residual costs are bound to the original selection of diseases for FRESHER. While the model can 

run with a reduced selection of diseases, the total predicted costs would be under-estimated in this case. 
 
When estimating the regional tables, the region-specific cost of disease was calculated as the 

weighted average of the country-specific costs of disease (where weights are country population sizes 
ratios by age and gender). 

 
The costs of some of the FRESHER-modelled conditions (e.g. back pain, injuries) were impossible to 

estimate with the administrative data. They will be estimated separately using a different methodology.  
 



  │ 45 
 

 

 
 

  
      

  
 

This project has received funding from the european union’s horizon 2020  
research and innovation programme under grant agreement no 643576. 

 

Page 45 of 56 

 

 Issues specific to France 

 
The study population is all persons aged 18 or older on January 1st 2014, sampled in the EGB database 

and alive on December 31st 2014.   
 
In the EGB database for France, three types of data can be used to identify patients with diseases: 
 
1. The Affection de Longue Durée (ALD) registry 
2. The drug prescription database (pharmacy data from le Système national d'information inter-

régimes de l'Assurance maladie (SNIIRAM)) 
3. Hospital discharge data (PMSI) 

 
For more information regarding the disease identification methodology, consult (Cortaredona and 

Ventelou, 2017[10]) 
 
The outcome variable is the total cost of hospital and ambulatory care in 2014 (annual amount 

reimbursed by the National Health Insurance) calculated at the patient level. The following costs are 
included in the French analysis: primary care and consultations with specialists, (reimbursed) medicines, 
medical procedures, biological tests, medical devices, emergency care and hospital inpatient care. This 
pricing of ambulatory care also takes into account possible copayment from the patient, except for over-
the-counter drugs which are not available in the EGB database. However, in France, almost all costs for 
the long-term chronic conditions such as those we are considering (especially those identified as ALD in 
the LTI database) are almost completely covered by the social security system. Therefore, there are hardly 
any OOP/other costs not taken into account in the estimation. For more details about the different 
components as mentioned above, refer to (Cortaredona and Ventelou, 2017[10]). 

 
Regarding the hospital sector, this cost estimation only takes into account the part of cost which is 

reimbursed to hospital through the diagnosis-related group (DRG) payment system (through which we 
can clearly assign a diagnosis using the reason of admission). DRG rates were used as proxies of case costs 
for public and private not‐for‐profit hospital stays. All other costs supported by the hospitals are not 
included, such as mission of general interest, clinical research, exploitation deficit. 

 

 Issues specific to Estonia 

 
The sample in Estonia is restricted to the users of health care, and therefore excludes healthy people; 

people with undiagnosed FRESHER and other chronic conditions; and patients with diagnosed FRESHER 
or other conditions that did not use any healthcare (e.g. not even visiting a doctor for a brief 
consultation). This is an excerpt from Estonia report (Thiébaut, 2017[12]): 

 
In Estonia, 95% of the population…is covered by a mandatory public insurance while private insurance 

is almost non-existent. The public health insurance is financed through a solidarity-based mandatory 
contributions in the form of an earmarked social payroll tax collected by the Estonian Health Insurance 
Fund (EHIF), an independent public institution. EHIF is the main purchaser of health care (HC) in Estonia… 
The dataset is an extract from EHIF discharge database, it contains all reimbursement costs for primary 
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care, specialists, hospital stays and rehabilitation claimed to EHIF by each Estonian people who have used 
the HC system during the year 2013…  

 
After removing missing cases and people under 18 years old, 817 522 individuals were available for 

analysis.  
 
EHIF reimbursement dataset was combined with the Estonia Census to make it more representative 

of the whole population. The predicted costs E(C|C>0, disease=1) and E(C|C>0, disease=0) were 
representatives of the users of healthcare. To make them representative of the whole population, such 
costs were multiplied by P(C>0) using logit parameters estimated on the combined EHIF and Census 
sample. Otherwise, the approach was similar to the one described in the second part of this paper.  

 
Primary care in Estonia is financed by capitation system: family doctors are practicing on the basis of 

a list of enrolled patients for whom they receive an annual capitation payment from EHIF. As a result 
reimbursement costs for primary care reported into EHIF claims file are very small, and often equal to 
zero (i.e.: GP’s visit are “free” for every Estonian person enrolled). A high proportion of patients in EHIF 
sample had zero reimbursed costs but were nevertheless users of healthcare. In such cases, individual 
cost has been corrected by computing an implicit cost of GP’s visit valued at 9.14 Euros, which were 
added to each bill for family medicine visits. 

 
The claim file does not contain individual medication consumption. However EHIF accounts provides 

annual prescribed medicine cost compensated by EHIF: 112 793 thousands Euros in 2013. Knowing total 
EHIF claimed reimbursement from our dataset is equal to 490 740 thousands Euros, we compute a ratio 
of prescribed medicine as share of EHIF reimbursed cost: 112 793 / 490 740 = 0.23, or pharmaceuticals 
cost = 0.23 times observed reimbursed cost. We apply this factor to each bill amount to get individual 
prescribed medicine cost. 

 
Table 3 in report by (Thiébaut, 2017[12]) presents distribution of OOP expenditure highlighting main 

components: prescribed and OTC medicines, dental care, specialists outpatient, LTC, glasses, and 
outpatient rehabilitation. OOP for prescribed medicines was differentiated by disease group according to 
table 11: previously estimated prescribed medicine cost is multiplied by OOP/EHIF ratio according to NCD 
identified as main diagnosis for visit/stay using diagnosis sequence variable. Other OOP components 
were not included (OTC, LTC, glasses and dental care). 

 
Since the time since diagnosis is not defined in the EHIF dataset, we assume that the average extra 

disease costs apply at all years since diagnosis. Therefore, when extrapolating the costs from Estonia to 
the other countries in Eastern/central EU region, we always used the conversion factors provided in Table 
4, including for acute conditions such as strokes, MI and cancer. Because of the data limitations, the 
disease groups are different in Estonia compared to France.  Specifically, the costs were estimated for 
the following disease categories: 

 
● AMI 
● Alcohol use 
● Cancers 
● Strokes 
● Cirrhosis 
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● CKD 
● COPD 
● Depression 
● Diabetes 
● Neurological disorders  
● Residual costs 

 
For more information, refer to (Thiébaut, 2017[12]).  

 

 Issues specific to the Netherlands (work ongoing)  

Since 2006 reform, Dutch citizen are covered by mandatory private insurance while public insurance 
no longer exists. The government continues to play a regulation role and subsidizes premiums among the 
low-income population. 

 
The COI analysis was performed on 2013 reimbursement cost database of the main private insurer 

named Vektis who is in charge to collect all discharge data from every Dutch insurer. This leads to 98% of 
cost coverage and 95% of population representativity. The 2% of remaining cost are OOP: this cost 
component was corrected at individual level according to age and gender (see (Thiébaut, 2017[12])for 
more details). 

 

 Preliminary validation 

In Table 20, we compare total medical costs predicted using our model with the costs from the SHA 
dataset (OECD). The first column contains our model prediction; the second- the total health 
expenditures from the SHA, for curative healthcare, together with rehabilitation and primary healthcare 
expenditures. Finally, in the third column, we show SHA estimates which also add medical goods spending 
to the second column numbers.  

 
The first three countries in the table belong in Eastern European region. As the data at the moment 

does not take into account out of pocket expenditures (mostly drugs), it’s not surprising that the costs in 
Estonia and two other countries in this region tend to be lower than the costs in SHA columns. However, 
the magnitude of the difference does not appear to be too large. The OOP expenditures will be taken 
into account in the final model version. 

 
On the other hand, the costs are quite close in 1st and 3rd columns for Italy, Portugal and Slovenia. 

Our prediction is considerably lower for Greece than the corresponding number from SHA data, but it’s 
important to keep in mind that there was a large drop in financing in Greece during the last few years. In 
fact, in 2010, financing in Greece was not very much different from the one predicted in our model. The 
fact that the cost in France predicted in our model (118.8) is quite close to the one in the second column 
(114.1) but also quite different from the one in the 3rd column (144.1) can be due to the fact that “medical 
goods” category includes not only drug spending, but also a range of medical devices which may not be 
covered by the French administrative dataset. Therefore, such costs can be underestimated for the 
residual cost component. The differential may also be partly due to the fact that the data on the OTC 
spending is not completely available in the French dataset. Moreover, the EGB dataset only takes into 
account the part of hospitalization costs which are reimbursed to hospital through the diagnosis-related 
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group (DRG) payment system (through which a diagnosis at admission can clearly be assigned). All other 
costs supported by the hospitals are not included, e.g. mission of general interest, clinical research, 
exploitation deficit, etc. Finally, at the moment not all diseases are modelled in Fresher.  

  
Table 4.6. Predicted total cost comparisons by country, in Euros, current prices, 2014 

Country 
Model 

prediction 
SHA* SHA** SHA*** 

Slovakia 1.91 2.38 2.5 3.633 

Estonia 0.37 0.58 0.6 0.735 

Latvia 0.44 0.41 0.4 0.57 

France 118.8 111 114.1 144.1 

Italy 86.6 67 72.4 88.4 

Portugal 10.4 7.7 7.8 9.302 

Greece 10.9 4.97 5.2 7.39 

Slovenia 1.96 1.42 1.5 1.804 

Spain 61.4 40.8 42.7 53.23 

Note: *curative &rehabilitative care; ** curative, rehabilitative and primary care; *** curative, rehabilitative, 
primary care and medical goods 

5.  Scenarios from global trends 

 Modelling framework 

Four scenarios have been associated with evolving trends in the main risk factors for chronic diseases, 
based on the evaluations of health experts (see Deliverables 4.2 and 5.2 of the FRESHER project, for 
detailed methodology on this qualitative-quantitative exercise). For every risk factor, experts were only 
asked to give their views on one parameter (e.g. prevalence of obesity for BMI) for the all Europe. We 
then have to make some assumptions in how those trends translate in the three different zones and in 
the full distribution of the risk-factors.  

1. No convergence in Europe, the gaps remains constant. We have assumed that the 
differences in prevalence of risk factors between the geographical zones remain the same at 
horizon 2050. The three zones follow parallel trends. 

2. No demographic effect included in expert views. We have assumed that the experts 
gave their views with an age standardize perspective. In practice we have keep the population 
distribution of 2015 to compute the adjustment on the risk factors’ distributions.  

3. Constant absolute spread over age. In most of risk factors (except tobacco) prevalence 
rises with age. We have assumed that all age categories contribute equally to the trend and then 
we have decided to shift all the distributions by age with the same absolute shift. 

4. Linear trend from 2015 to 2050. We have assumed Europe is reaching the expert views 
in 2050 on a linear trend. 

 Methodology by risk factor 

 Alcohol 
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We keep the prevalence of current drinker constant. We shift the average alcohol daily intake (g/day) 
to make the expert views. The gamma distribution, modelling alcohol consumption, is then automatically 
updated as explained in 3.2.4.2.  

 BMI 

For BMI, experts only gave their view on the evolution of the prevalence of obesity. As explained in 
3.4, we model BMI through the prevalence of 7 different categories of BMI. We then have to translate 
the shift into those 7 categories.  

We have assumed that categories above obesity will be uniformly shifted to match the desired 
obesity level. Then we assume the prevalence of strictly overweight (BMI between 25 and 30) do not 
change over time. And we assume that the categories of normal weight compensate the raise of obesity. 
We based this hypothesis on our input data as you can see in the table below 

 
Table 5.1 Evolution of the prevalence of the different categories of BMI in France (for age 50-55)  

Female Male 

 Normal 
weight 

Overweight Obesity 
Normal 
weight 

Overweight Obesity 

Between 1990 - 1995 -6% 2% -6% -10% 1% 14% 
Between 1995 - 2000 -7% 1% -7% -11% 0% 14% 
Between 2000 - 2005 -7% 1% -7% -12% 0% 13% 
Between 2005 - 2010 -7% 1% -7% -10% -1% 11% 
Between 2010 - 2014 -6% 0% -6% -8% -1% 7% 

 

 Blood Pressure 

As explained in 3.3, blood pressure is modelled with a log normal distribution. We then assume that 
the standard deviation remains constant, we only shift the average systolic blood pressure. 

 Physical Activity 

We shift the prevalence of inactivity; the other categories compensate the increase (or the decrease) 
in a uniform way. 

 Smoking 

We shift the prevalence of smokers and the prevalence of non-smoker as well in the opposite 
direction. 
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6.  Modelling interventions 

 General principles 

On top of scenarios, which define the trends for demography and epidemiology at global level, the 
microsimulation model uses interventions to modify the life trajectory of individuals. They can be used 
to transform most of the aspects of the simulation, but in FRESHER they are essentially used to reflect 
the impact of a prevention policy on risk factors of individuals. 

 Specifications 

Among the most effective interventions to tackle the main risk factors linked to NCDs (smoking, 
alcohol, obesity), we have selected one reference intervention for each risk factor. 

 Smoking 

The intervention selected as the most effective one to reduce smoking is the taxation of tobacco. 

6.2.1.1. Tobacco taxation 

Characteristics 

Based on ISS’s review of quantitative evidences on effectiveness of policy option to tackle tobacco 
smoking (Hopkins, Briss et al. 2001) and((CPSTF)) 
- Elasticity: -0.37 for young people up to age 24, -0.18 for adults 25+ 
- Effect: we have used a taxation rate of 20 % 
- Efficiency over time: full effect reached immediately when the intervention begins, lasts forever 

Model definition 

SmokingReduction --begindate 2018-01-01 --factor 20 --effect 24:-0.37&25:-

0.18 --efficiency 0:100 

 

 Alcohol 

The intervention selected here is a combination of alcohol advertising regulation and taxation. 

6.2.2.1. Alcohol advertising regulation 

Characteristics 

Based on OECD’s report on impacts of alcohol policies (Cecchini, Devaux and Sassi, 2015[6]) . Only the 
effect on binge drinking has been used here (the effect on consumption being affected by the taxation). 
- Effect: -1.6 % of binge drinkers in the whole population 
- Efficiency over time: linear increase (full effect reached after 1 year), lasts forever 
 

6.2.2.2. Alcohol taxation 

Characteristics 
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Based on OECD’s report on impacts of alcohol policies (Cecchini, Devaux and Sassi, 2015[6]). Each 
elasticity value represents the mean of a normal distribution (sigma = |mu| / 2) used to randomly draw 
the effect for a given individual in the corresponding drinking category. 
- Effect : we have used a taxation rate of 10 % 
- Efficiency over time: full effect reached immediately when the intervention begins, lasts forever 

 
 

Table 6.1 Price elasticity according to drinking category 

Age 
Female 
not harmful 

Female 
harmful 

Male 
not harmful 

Male 
harmful 

≤ 24 -0.42 -0.24 -0.29 -0.17 

25-59 -0.06 -0.35 -0.42 -0.24 

≥ 60 -0.59 -0.34 -0.41 -0.24 

 Obesity 

The intervention selected as the most effective here is the tailored counselling by GP or dietetician, 
targeting overweight or obese individuals. 

6.2.3.1. Obesity Counselling 

Characteristics 

Based on THL’s review of quantitative evidences on effectiveness of policy option to tackle obesity 
(Booth et al., 2014[13]). 
- Effect : 

- after 1 year : -1.36 kg translating to -0.47 kg/m² assuming an average size of 1.70 m 
- after 2 years : -1.23 kg translating to -0.42 kg/m² (which represents 90% of -0.47) 

- Efficiency over time: 
- linear increase, maximum effect reached after 1 year 
- then linear decrease to 90 % after 2 years 
- then stay at 90 % forever 

 

 Policy package 

We have combined three interventions in one policy package, see deliverable 5.2. We assume that 
the effect of the three policies are independent and do not interact which each other. 
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Table 7.1 IHME nature of injury and associated short/long term disability weight(Vos, Allen et al. 2016). 

Id IHME nature of injury Health State Short Term 
GHE 
2015 

Health State Long Term 
GHE 
2015 

N1 Open wound, superficial injuries and dislocations Open wound: short term 0.006   

N2 Injury Requiring Urgent Care Poisoning: short term 0.132     

N3 Injury Requiring Emergency Care Drowning and non-fatal submersion: short or long term 0.247 Drowning and non-fatal submersion: short or long term 0.159 

N4 Fracture of clavicle, scapula, humerus, or skull Multiple 0.053 Multiple 0.053 

N5 Fracture of sternum, rib, or face bone Multiple 0.085 Multiple 0.067 

N6 
Fracture of wrist and other distal part of hand, fracture of foot 
except ankle 

Fracture of hand: short term 0.01    

N7 Fracture of radius or ulna Fracture of radius or ulna: short term 0.028     

N8 Fracture of femur Fracture other than neck of femur: short term 0.111     

N9 Fracture of Hip Fracture of neck of femur: short term 0.258     

N10 Fracture of patella, tibia, fibula, or ankle Fracture of patella, tibia or fibula, or ankle: short term 0.05 Fracture of patella, tibia or fibula, or ankle: long term 0.055 

N11 Fracture of pelvis Fracture of pelvis: short term 0.279 Fracture of pelvis: long term 0.182 

N12 Long term outcome of dislocation of hip/knee/shoulder    Multiple 0.0637 

N14 Burns, <20% total burned surface area without lower airway burns 
Burns of <20% total surface area without lower airway burns: 
short term 

0.141 
Burns of <20% total surface area or <10% total surface area if head 
or neck, or hands or wrist involved: long term 

0.016 

N16 
Burns, ≥ 20% total burned surface area or ≥ 10% total burned 
surface area if head/neck or hands/wrist involved 

Burns of ≥20% total surface area: short term 0.314 
Burns of ≥20% total surface area or ≥10% total surface area if head 
or neck, or hands or wrist involved: long term 

0.135 

N17 Amputation of both lower limbs or both upper limbs     multiple 0.1055 

N19 Amputation of one lower limb or one upper limb    multiple 0.0785 

N20 Amputation of finger(s) (with or without thumb or toe)     multiple 0.008 

N21 Injured nerves Injured nerves: short term 0.1 Injured nerves: long term 0.113 

N22 Spinal cord lesion at neck level     Spinal cord lesion at neck: treated 0.589 

N23 Fracture of vertebral column Fracture of vertebral column: short or long term 0.111 Fracture of vertebral column: short or long term 0.111 

N24 Spinal cord lesion below neck level     Spinal cord lesion below neck: treated 0.296 

N27 Severe of traumatic brain injury Severe traumatic brain injury: short term 0.11 Traumatic brain injury: long-term consequences, severe 0.637 

N28 Severe chest injury Severe chest injury: short term 0.369 Severe chest injury: long term 0.047 
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Table 7.2 IHME prevalence of the different “nature of injuries” in the cause injuries (Vos, Allen et al. 2016)  
N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N14 N16 N19 N20 N21 N22 N23 N24 N25 N26 N28 

Road injury 1.8% 3.2% 6.9% 7.9% 2.0% 3.6% 2.1% 4.9% 11.9% 2.7% 1.5% 0.1% 0.5% 0.1% 0.1% 0.2% 0.6% 4.5% 0.3% 2.1% 11.7% 12.4% 1.8% 

Falls 3.1% 0.9% 8.3% 4.7% 2.4% 6.2% 2.7% 17.2% 11.2% 1.8% 2.4% 0.0% 0.5% 0.0% 0.0% 0.1% 0.4% 5.7% 0.4% 0.9% 9.1% 6.0% 3.1% 

Drowning 3.8% 64.8% 1.2% 1.8% 0.1% 0.5% 0.8% 1.4% 2.1% 0.3% 0.7% 0.2% 0.7% 0.0% 0.0% 0.1% 2.6% 3.0% 0.4% 0.5% 3.9% 2.8% 3.8% 

Self-Harm 72.3% 2.7% 0.7% 1.2% 0.4% 0.3% 0.3% 0.3% 0.6% 0.3% 0.0% 1.0% 0.5% 0.0% 0.1% 0.6% 0.0% 0.5% 0.2% 0.0% 1.0% 2.5% 72.3% 

Interpersonal violence 8.9% 4.9% 5.8% 13.2% 1.3% 1.8% 0.5% 1.7% 1.8% 0.3% 0.5% 0.7% 1.3% 0.0% 0.1% 0.8% 0.2% 1.2% 1.5% 0.3% 11.7% 4.2% 8.9% 

 


